Variable Precision Floating-Point Divide and Square Root for Efficient FPGA Implementation of Image and Signal Processing Algorithms

نویسنده

  • Xiaojun Wang
چکیده

Field Programmable Gate Arrays (FPGAs) are frequently used to accelerate signal and image processing algorithms due to their flexibility, relatively low cost, high performance and fast time to market. For those applications where the data has large dynamic range, floating-point arithmetic is desirable due to the inherent limitations of fixed-point arithmetic. Moreover, optimal reconfigurable hardware implementations may require the use of arbitrary floating-point formats that do not necessarily conform to IEEE specified sizes in order to make the best use of available hardware resources. Division and square root are important operators in many digital signal processing (DSP) applications including matrix inversion, vector normalization, and Cholesky decomposition. We present variable precision floating-point divide and square root implementations on FPGAs. The floating-point divide and square root operators support many different floating-point formats including IEEE standard formats. Both modules demonstrate a good tradeoff between area, latency and throughput. They are also fully pipelined to aid the designer in implementing fast, complex, and pipelined designs. To demonstrate the usefulness of the floating-point divide and square root operators, two applications are presented. First, we use floating-point divide to implement the mean

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Custom Precision Floating Point Arithmetic on FPGAs

F loating point arithmetic is a common requirement in signal processing, image processing and real time data acquisition & processing algorithms. Implementation of such algorithms on FPGA requires an efficient implementation of floating point arithmetic core as an initial process. We have presented an empirical result of the implementation of custom-precision floating point numbers on an FPGA p...

متن کامل

FPGA-based Normalization for Modified Gram-Schmidt Orthogonalization

Eigen values evaluation is an integral but computation-intensive part for many image and signal processing applications. Modified Gram-Schmidt Orthogonalization (MGSO) is an efficient method for evaluating the Eigen values in face recognition algorithms. MGSO applies normalization of vectors in its iterative orthogonal process and its accuracy depends on the accuracy of normalization. Using sof...

متن کامل

Implementation of single precision floating point square root on FPGAs

Square root operation is hard to implement on FPGAs because of the complexity of the algorithms. In this paper, we present a non-restoring square root algorithm and two very simple single precision floating point square root implementations based on the algorithm on FPGAs. One is low-cost iterative implementation that uses a traditional adder/subtractor. The operation latency is 25 clock cycles...

متن کامل

Proving the IEEE Correctness of Iterative Floating-Point Square Root, Divide, and Remainder Algorithms

The work presented in this paper was initiated as part of a study on software alternatives to the hardware implementations of floating-point operations such as divide and square root. The results of the study proved the viability of software implementations, and showed that certain proposed algorithms are comparable in performance to current hardware implementations. This paper discusses two co...

متن کامل

Correctness Proofs Outline for Newton-Raphson Based Floating-Point Divide and Square Root Algorithms

This paper describes a study of a class of algorithms for the floating-point divide and square root operations, based on the Newton-Raphson iterative method. The two main goals were: (1) Proving the IEEE correctness of these iterative floating-point algorithms, i.e. compliance with the IEEE-754 standard for binary floating-point operations [1]. The focus was on software driven iterative algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007